\(\int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx\) [2466]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 248 \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx=-\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}+\frac {\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\arcsin \left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}} \]

[Out]

-2*e*(c*x^2+b*x+a)^(1/2)/(a*e^2-b*d*e+c*d^2)/(e*x+d)^(1/2)+EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c
+b^2)^(1/2))^(1/2)*2^(1/2),(-2*e*(-4*a*c+b^2)^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2))*2^(1/2)*(-4*a*c+b
^2)^(1/2)*(e*x+d)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/(a*e^2-b*d*e+c*d^2)/(c*x^2+b*x+a)^(1/2)/(c*(e*x+
d)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {758, 21, 732, 435} \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx=\frac {\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\arcsin \left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {2 e \sqrt {a+b x+c x^2}}{\sqrt {d+e x} \left (a e^2-b d e+c d^2\right )} \]

[In]

Int[1/((d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(-2*e*Sqrt[a + b*x + c*x^2])/((c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x]) + (Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x
]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2
- 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/((c*d^2 - b*d*e + a*e^2)*Sq
rt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*Rt[b^2 - 4*a*c, 2]*
(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*
e - e*Rt[b^2 - 4*a*c, 2])))^m)), Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2*c*d - b*e - e*Rt[b^2 - 4*a*c, 2
])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 758

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*
((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((m + 1)*(c*d^2 - b*d*e + a*e^2)),
Int[(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, x]*(a + b*x + c*x^2)^p, x], x]
 /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e
, 0] && NeQ[m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ
[p]) || ILtQ[Simplify[m + 2*p + 3], 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}-\frac {2 \int \frac {-\frac {c d}{2}-\frac {c e x}{2}}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx}{c d^2-b d e+a e^2} \\ & = -\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}+\frac {c \int \frac {\sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx}{c d^2-b d e+a e^2} \\ & = -\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}+\frac {\left (\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 \sqrt {b^2-4 a c} e x^2}{2 c d-b e-\sqrt {b^2-4 a c} e}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-b e-\sqrt {b^2-4 a c} e}} \sqrt {a+b x+c x^2}} \\ & = -\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}+\frac {\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.52 (sec) , antiderivative size = 408, normalized size of antiderivative = 1.65 \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx=\frac {-\frac {4 e^2 (a+x (b+c x))}{\sqrt {d+e x}}+\frac {i \sqrt {2} \left (2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e\right ) \sqrt {\frac {e \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {1-\frac {2 c (d+e x)}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}} \left (E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {d+e x}\right )|\frac {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}\right )-\operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {d+e x}\right ),\frac {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}\right )\right )}{\sqrt {\frac {c}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}}}}{2 e \left (c d^2+e (-b d+a e)\right ) \sqrt {a+x (b+c x)}} \]

[In]

Integrate[1/((d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2]),x]

[Out]

((-4*e^2*(a + x*(b + c*x)))/Sqrt[d + e*x] + (I*Sqrt[2]*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*Sqrt[(e*(b + Sqrt[
b^2 - 4*a*c] + 2*c*x))/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[1 - (2*c*(d + e*x))/(2*c*d + (-b + Sqrt[b^2
- 4*a*c])*e)]*(EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[d + e*x]], (2*c*d
 - (b + Sqrt[b^2 - 4*a*c])*e)/(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)] - EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(-2*c
*d + (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[d + e*x]], (2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)/(2*c*d + (-b + Sqrt[b^2 -
 4*a*c])*e)]))/Sqrt[c/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)])/(2*e*(c*d^2 + e*(-(b*d) + a*e))*Sqrt[a + x*(b + c
*x)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(871\) vs. \(2(220)=440\).

Time = 1.94 (sec) , antiderivative size = 872, normalized size of antiderivative = 3.52

method result size
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+b x +a \right )}\, \left (-\frac {2 \left (c e \,x^{2}+b e x +a e \right )}{\left (a \,e^{2}-b d e +c \,d^{2}\right ) \sqrt {\left (x +\frac {d}{e}\right ) \left (c e \,x^{2}+b e x +a e \right )}}+\frac {2 \left (-\frac {b e -c d}{a \,e^{2}-b d e +c \,d^{2}}+\frac {b e}{a \,e^{2}-b d e +c \,d^{2}}\right ) \left (\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )}{\sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +x d b +a d}}+\frac {2 c e \left (\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \left (\left (-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )+\frac {\left (-b +\sqrt {-4 a c +b^{2}}\right ) F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )}{2 c}\right )}{\left (a \,e^{2}-b d e +c \,d^{2}\right ) \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +x d b +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+b x +a}}\) \(872\)
default \(\text {Expression too large to display}\) \(1365\)

[In]

int(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

((e*x+d)*(c*x^2+b*x+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2)*(-2*(c*e*x^2+b*e*x+a*e)/(a*e^2-b*d*e+c*d^2)/((
x+d/e)*(c*e*x^2+b*e*x+a*e))^(1/2)+2*(-(b*e-c*d)/(a*e^2-b*d*e+c*d^2)+b*e/(a*e^2-b*d*e+c*d^2))*(d/e-1/2*(b+(-4*a
*c+b^2)^(1/2))/c)*((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2)*((x-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))/(-d/e-
1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2)*((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(
1/2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)*EllipticF(((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1
/2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2))+2*c*e/(a*e^2-b*d*e+c*d^2
)*(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c)*((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2)*((x-1/2/c*(-b+(-4*a*c+
b^2)^(1/2)))/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2)*((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e+1/2*(b+(-4*a*
c+b^2)^(1/2))/c))^(1/2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)*((-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))*
EllipticE(((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e-1/2/c*
(-b+(-4*a*c+b^2)^(1/2))))^(1/2))+1/2/c*(-b+(-4*a*c+b^2)^(1/2))*EllipticF(((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/
2))/c))^(1/2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 459, normalized size of antiderivative = 1.85 \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx=-\frac {2 \, {\left (3 \, \sqrt {c x^{2} + b x + a} \sqrt {e x + d} c e^{2} - {\left (2 \, c d^{2} - b d e + {\left (2 \, c d e - b e^{2}\right )} x\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right ) + 3 \, {\left (c e^{2} x + c d e\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )}}{27 \, c^{3} e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right )\right )\right )}}{3 \, {\left (c^{2} d^{3} e - b c d^{2} e^{2} + a c d e^{3} + {\left (c^{2} d^{2} e^{2} - b c d e^{3} + a c e^{4}\right )} x\right )}} \]

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

-2/3*(3*sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)*c*e^2 - (2*c*d^2 - b*d*e + (2*c*d*e - b*e^2)*x)*sqrt(c*e)*weierstr
assPInverse(4/3*(c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c
 - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b*e)/(c*e)) + 3*(c*e^2*x + c*d*e)*s
qrt(c*e)*weierstrassZeta(4/3*(c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2
*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)/(c^3*e^3), weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e
+ (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*
c)*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b*e)/(c*e))))/(c^2*d^3*e - b*c*d^2*e^2 + a*c*d*e^3 + (c^2*d^2*e^2 - b*
c*d*e^3 + a*c*e^4)*x)

Sympy [F]

\[ \int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx=\int \frac {1}{\left (d + e x\right )^{\frac {3}{2}} \sqrt {a + b x + c x^{2}}}\, dx \]

[In]

integrate(1/(e*x+d)**(3/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/((d + e*x)**(3/2)*sqrt(a + b*x + c*x**2)), x)

Maxima [F]

\[ \int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx=\int { \frac {1}{\sqrt {c x^{2} + b x + a} {\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*(e*x + d)^(3/2)), x)

Giac [F]

\[ \int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx=\int { \frac {1}{\sqrt {c x^{2} + b x + a} {\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*(e*x + d)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx=\int \frac {1}{{\left (d+e\,x\right )}^{3/2}\,\sqrt {c\,x^2+b\,x+a}} \,d x \]

[In]

int(1/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(1/2)), x)